







# GLOBAL WIND ENERGY SHIPPING AND LOGISTICS

# LOGISTICS INNOVATION COLLABORATION WITH PORT OF RØNNE AND OFFSHORE CENTER BORNHOLM

JANUARY 27, 2016, RØNNE, DENMARK

Prepared for



Denmark/Bornholm in focus





#### **BACKGROUND & INTRODUCTION**





## Broad industry support

#### PhD objective is for the research to be useful to industry:

#### **Reference Group**

























#### WIND MARKET SIZING AND OUTLOOK





#### Onshore and offshore distribution



Installed distribution in 2013 (MW)



## Number of offshore annual MW and wind farms installed up to and including 2013



| Year | MW<br>installed | of wind<br>farms |
|------|-----------------|------------------|
| 1991 | 5               | 1                |
| 1992 | ı               | 0                |
| 1993 | ı               | 0                |
| 1994 | 2               | 1                |
| 1995 | 5               | 1                |
| 1996 | 17              | 1                |
| 1997 | 3               | 1                |
| 1998 | -               | 0                |
| 1999 | -               | 0                |
| 2000 | 55              | 3                |
| 2001 | 10              | 1                |
| 2002 | 183             | 2                |
| 2003 | 251             | 3                |
| 2004 | 60              | 1                |
| 2005 | 90              | 1                |
| 2006 | 198             | 2<br>2<br>4      |
| 2007 | 200             | 2                |
| 2008 | 344             | 4                |
| 2009 | 666             | 8                |
| 2010 | 1.428           | 9                |
| 2011 | 470             | 10               |
| 2012 | 1.131           | 9                |
| 2013 | 1.720           | 13               |



Source: BTM Consult a part of Navigant (2014a) and own construction



#### LOGISTICAL CHALLENGES





## **DIMENSIONS - ROAD**







## Innovation - what comes first?



## RACE FOR LARGER WTG OUTPUT - AND IMPORTANCE OF SHIPPING/LOGISTICS/SCM



**AALBORG UNIVERSITY** 

DENMARK

## R+D - logistics

#### Implications on:

- Infrastructure (roads, bridges, tunnels, viaducts, storage facilities, ports)
- Logistics and shipping assets (trucks, trains, vessels, helicopters)
- Lifting equipment (land-based cranes, sea-borne cranes)
- Transport equipment (lifting equipment, transport frames, seafastening)
- Health, safety, security, environment, and quality (HSSEQ)

#### Makers of wind turbines (OEMs):

#### The pioneers





#### The "other" Europeans













DENMARK



#### Examples

of the Asian "newcomers"













## And what about...?

### Floating turbines...

- Installation?
- O&M?







## How big is big enough?

| Weight & Dimensions | Full nacelle<br>weight<br>(t) | Hub<br>weight | Total Hub<br>Mass<br>(t) | Blade<br>Length<br><sup>(m)</sup> | Blade<br>weight<br><sup>(t)</sup> | Tower<br>weight<br><sup>(t)</sup> |
|---------------------|-------------------------------|---------------|--------------------------|-----------------------------------|-----------------------------------|-----------------------------------|
| Siemens 2.3 MW      | 82                            |               |                          | 45                                |                                   |                                   |
| Repower 6.15 MW     | 325                           |               |                          | 61                                |                                   |                                   |
| Siemens 6 (7) MW    | 364                           | 96            | 360                      | 75                                | 27                                |                                   |
| Samsung 7.5 MW      |                               |               |                          | 83                                |                                   |                                   |
| Vestas 8 MW         | 390                           |               |                          | 80                                |                                   |                                   |
| NREL/DTU 10 MW      | 446                           | 106-180       | 700                      | 86-100                            | 42-57                             | 628                               |
| NREL 15 MW          |                               | 303           | 1000                     | 125                               | 100                               | 1000                              |
| DTU 20 MW           | 1061                          | 299           |                          | 125                               | 118                               | 1985                              |





#### RESEARCH FINDINGS





## Single project life-cycle E2E



DENMARK

## Very different supply chains

#### Each life-cycle phase have very different characteristics

- Different supply chains
- Different logistics and shipping needs
- Different supply chain constituencies and contract set-up

| Wind energy supply chains |                                                             |                                                                                      |                                                |                                                                           |                                                                                       |                                                                      |  |  |  |
|---------------------------|-------------------------------------------------------------|--------------------------------------------------------------------------------------|------------------------------------------------|---------------------------------------------------------------------------|---------------------------------------------------------------------------------------|----------------------------------------------------------------------|--|--|--|
|                           | Development &                                               |                                                                                      |                                                |                                                                           |                                                                                       | De-commissioning                                                     |  |  |  |
| Wind farm phase           | Consent (D&C)                                               | Installation & Commissioning (I&C)                                                   |                                                | Operations & Maintenance (O&M)                                            |                                                                                       | (De-comm)                                                            |  |  |  |
| Supply chains             | D&C chain                                                   | I&C chain - Inbound                                                                  | I&C chain - Outbound                           | O&M - Preventive                                                          | O&M - Breakdown                                                                       | De-comm chain                                                        |  |  |  |
| Description               | Site surveys, birds,<br>wildlife, sea, seabed               | Inbound assembly parts and components                                                | Outbound wind<br>modules for wind farm<br>site | Personnel, parts, and components                                          | Personnel, parts,<br>components, and<br>modules                                       | Restoration of site for<br>new wind farm or to<br>original condition |  |  |  |
| Characteristics           | Specialized vehicles<br>(onshore) and vessels<br>(offshore) | Mainly a homogenous<br>flow using ocean<br>containers and air;<br>some project cargo | Project cargo/break-<br>bulk                   | Mainly service boats,<br>crew transfer vessels<br>and some larger vessels | Service boats and<br>helicopters, some larger<br>vessels like MPV,<br>tug&barge, WTIV | Project cargo/break-<br>bulk                                         |  |  |  |

## **CASE STUDY:** ANHOLT OFFSHORE WIND FARM



MANUFACTURING ENGINEERING

- SHIPPING & LOGISTICS

**Fact box** 

- Operator: DONG Energy
- Ownership: DONG Energy, PKA, and PensionDanmark in JV
- Construction cost: DKK 11.5B
- Number of positions: 111 WTG's
- WTG type: 3.6 MW geared Siemens Wind Power
- Foundation type: MP/TP
- Total windfarm output: 400 MW
- Area covered: 88 km2
- Distance from installation / service port (Grenå): 15 km
- Water depth 15.5 18 meters



## Case: O&M logistics cost reduction



**AALBORG UNIVERSITY** 

DENMARK

MANUFACTURING ENGINEERING
- SHIPPING & LOGISTICS

## Case: Logistics innovation







#### Case: Testing – logistics and shipping

1. Small scale test – DTU, Force

2. Shore turbines - Østerild

3. Other parts – LORC

#### Next up:

In the ocean?









#### CONCLUSION





#### KEY TAKE-AWAYS FROM TODAY

- Offshore wind market is growing rapidly
- Many projects in the pipeline, under construction, and already in operation
- End-to-end life-cycle view for logistics holds strong potential for cost savings
- Proactive logistics innovation is critical

**DDMF** grant

2012-097

Live testing and training offshore is needed





## THOMAS POULSEN – Q&A?

Aalborg University, Copenhagen Campus

Department of Mechanical and Manufacturing Engineering

#### **CONTACT INFO**

tp@m-tech.aau.dk www.en.m-tech.aau.dk



#### Select consulting clients

BTM Consult

<u>=</u>SPRT

#### **RESEARCH INTERESTS**

Global wind energy shipping and logistics

**DDMF** grant

2012-097

#### **BACKGROUND**

25 years of global shipping, logistics, and SCM experience having lived in 8 different countries working at practical, strategic, general management, and consulting level



